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Abstract

A major fraction of fine particle matter consists of organic carbon (OC) but its origin
is still inadequately known. In this study the sources of OC were investigated in the
northern European urban environment in Helsinki, Finland. Measurements were car-
ried out over one year and they included both filter (PM1) and online methods. From5

the filter samples OC, elemental carbon (EC), water-soluble OC (WSOC), levoglucosan
and major ions were analyzed. Filter data together with the concentrations of inorganic
gases were analyzed by Positive matrix factorization (PMF) method in order to find the
sources of OC (and WSOC) on an annual as well as on a seasonal basis. In order to
study the diurnal variation of sources, OC and EC were measured by a semicontinu-10

ous OC/EC analyzer and major ions were determined by a Particle-into-Liquid Sampler
coupled to ion chromatographs. According to PMF, OC concentrations were impacted
by four sources: biomass combustion, traffic, long-range transport and secondary pro-
duction. On an annual basis the OC concentration was dominated by secondary or-
ganic aerosol (SOA). Its contribution to OC was as high as 64% in summer, which may15

result besides anthropogenic sources also from the large biogenic VOC emissions in
the boreal region. In winter biomass combustion constituted the largest fraction in
OC due to domestic wood combustion for heating purposes. Traffic contributed to OC
from 15 to 27%. Regarding the diurnal variation, the contribution of traffic was higher
from 08:00 to 18:00 on weekdays than on weekends. The contribution of long-range20

transport to OC was 24% on average. All four sources influenced also on the WSOC
concentrations, however, the contribution of SOA was significantly larger to WSOC
than to OC.

1 Introduction

Urban aerosol is a complex mixture of primary particulate emissions from industry,25

transportation, power generation and natural sources (e.g. terrestrial dust, volcanic ac-
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tion, sea spray), and of secondary material formed by gas-to-particle conversion mech-
anisms. A substantial fraction (20–80%) of the atmospheric fine particulate matter (PM)
in an urban environment consists of carbonaceous material (Rogge et al., 1993; Nunes
and Pio, 1993; Sillanpää et al., 2005), but still it is one of the least understood compo-
nents of aerosols. Carbonaceous material is usually divided in two fractions, elemental5

carbon (EC, sometimes referred to as black carbon or graphitic carbon) and organic
carbon (OC). EC is a primary pollutant formed in combustion processes whereas OC
is a complex mixture of many groups of compounds originating from primary sources
and secondary formation processes (Seinfeld and Pandis, 1998).

Major anthropogenic emission sources are biomass and fossil fuel combustion. An-10

thropogenic biomass combustion includes both the agricultural combustion such as
burning of biomass for land clearing or new kinds of land use, and the combustion
for heat production, e.g. in domestic boilers, wood stoves and fireplaces. The adverse
impact of domestic biomass combustion on local ambient air quality is pronounced, be-
cause such emissions are mostly unregulated, and the combustion in domestic heat-15

ing appliances is incomplete (Fine et al., 2002; Glasius et al., 2006). Moreover, the
release height of the emissions is typically low, and emissions are highest during the
winter when the air mixing can be poor, which both amplify the local air quality impact
and increase the risk of adverse health effects in populated areas (Lighty et al., 2000;
Naeher et al., 2007). It has been shown that in northern Europe wood combustion20

can result in local PM2.5 levels comparable to heavily trafficked streets (Glasius et al.,
2006). Even though the health effects of traffic related particles have been found to be
severe (Kunzli et al., 2000; Solomon and Balmes, 2003) there is no reason to assume
that health effects of wood combustion are smaller than the health effects of other types
of ambient particles on the mass basis (Boman et al., 2003).25

In addition to being emitted from motor vehicles and biomass combustion, a large
fraction of organic aerosol is formed in the atmosphere from low-volatility compounds
produced by the oxidation of gas-phase anthropogenic and biogenic precursors. This
secondary organic aerosol (SOA) has been found to contribute to OC from 80% in
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summer in Japan (Kondo et al., 2007) to near zero in Pittsburgh, Pennsylvania in winter
(Cabada et al., 2002). Recently, it has been stated that there may be a consistent
background for SOA in the regional air mass but also in case of primary OC 70% is
found to originate from regional transport instead of local sources (Subramanian et al.,
2007).5

Concerning the sources of OC, the Helsinki Metropolitan Area is quite special. It is
a northern European urban environment located in boreal region. According to studies
(Lindfors et al., 2000) biogenic volatile organic carbon (VOC) emissions, and accord-
ingly biogenic secondary organic aerosol concentrations are outstandingly large in a
boreal region (Tunved et al., 2006). Additionally, long-range transport (LRT) has a sig-10

nificant impact on the PM levels in Helsinki, since the mass concentrations due to fine
particles from local or regional sources are typically low compared with, e.g., those in
Central Europe (Sillanpää et al., 2005). On average 50–75% of PM2.5 in Finland has
been estimated to be long-range transported (Pakkanen et al., 2001; Karppinen et al.,
2004) but in case of OC the influence of LRT is still uncertain. However, it has been15

shown that during the episodes of long-range transported wild fire emission plumes,
the OC concentration increased considerably (Saarikoski et al., 2007).

The aim of this study was to investigate the sources of organic carbon in fine par-
ticulate matter in Helsinki, Finland. In a previous study conducted in Helsinki the con-
centration of OC in fine (PM2.5) and coarse (PM2.5−10) particles has been explored on20

annual basis (Viidanoja et al., 2002). In addition, the sources of OC in Helsinki, to-
gether with five other European cities, have been discussed qualitatively by Sillanpää
et al. (2005). However, latter results were limited to a single six-week measurement
campaign conducted in Helsinki in springtime. In this study three different approaches
were applied in order to investigate the origin of OC. This study together with the pa-25

per of the size distributions of water-soluble organic carbon (Timonen et al., 2008)
completes significantly the knowledge available until now of the sources and seasonal
behaviour of organic aerosol in northern European urban areas.
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2 Experimental

2.1 Measurement site

The measurement site of this study was the urban background station SMEAR
III (60◦20′N, 24◦97′E, 26 m above sea level) that belongs to the SMEAR network
(http://www.atm.helsinki.fi/SMEAR/). The site is situated in the heart of the Helsinki5

Metropolitan Area, a fairly flat coastal area of the Baltic Sea in Southern Finland. In the
city of Helsinki there are 0.5 million inhabitants while the population of the whole area
is approximately 1.0 million. The station is located in the campus area of the University
of Helsinki at a distance of about 5 km northeast from the downtown of Helsinki. It is
surrounded by the university buildings in the northeastern side, and by mainly forested10

area, with some buildings in the west. At a distance of less than 200 m to the east,
there is a densely trafficked major road (60 000 cars/day). The area between this road
and the measurement site is forested.

2.2 PM1 filter sampling and analysis

2.2.1 Sampling system15

Ambient particulate matter samples were collected using two quartz fiber filters (What-
man Q-MA 47 mm) placed in series in a filter cassette system (Gelman Sciences). In
order to collect the submicrometer particle size fraction of PM only (aerodynamic par-
ticle diameter <1µm, PM1), the four upper stages (8–11) of the Berner low pressure
impactor (BLPI; Berner and Lürzer, 1980) were installed prior to the filter to remove20

supermicrometer particles. The cut-size of the preimpactor (D50) is determined by the
lowest stage, the others are used to divide the PM loading to several stages and to
ensure removal of particles well above the lowest cut-size. The nominal D50 value for
stage 8 is 2µm with a flow rate of 24.5 L min−1, but since the flow rate of the BLPI was
increased to 80 L min−1, the D50 value for the stage 8 decreased to 1µm. Calculation25
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was based on the theory presented by Rader and Marple (1985) assuming that the flow
is incompressible and the Stokes number is 0.24. PM1 filter samples were collected
from the beginning of March 2006 to the end of February 2007. The sampling duration
was 24 h on working days and 72 h over weekends. The measurement height was 5 m
from the ground surface.5

2.2.2 Chemical analyses

Pieces with an area of 1 cm2 were punched from the PM1 quartz filters and analyzed for
OC, EC, WSOC, levoglucosan and water-soluble ions. Detailed descriptions of the an-
alytical methods have been given by Saarikoski et al. (2007) and Timonen et al. (2008).
Shortly, OC and EC were determined with a thermal-optical carbon analyzer (Sunset10

Laboratory Inc., Portland, OR; Birch and Cary, 1996). The temperature program had
four steps with the temperatures of 310 (90 s), 475 (90 s), 615 (90 s) and 800◦C (90 s).
In the helium-oxygen phase (2% oxygen) there were six temperature steps: 550 (45 s),
625 (45 s), 700 (45 s), 775 (45 s), 850 (45 s) and 890 ◦C (120 s).

WSOC was analyzed using a Total Carbon Analyzer equipped with a high-sensitive15

catalyst (TOC-VCPH, Shimadzu). Samples were extracted by shaking the filter piece
with 15 mL of deionized water (Milli-Q, Gradient, Millipore) for 15 min. The method
used was the Non-Purgeable Organic Carbon method, which measured non-volatile
OC present in the sample. By acidifying the sample with 1% acid, inorganic car-
bon (carbonates, hydrogen carbonates and dissolved carbon dioxide) was eliminated.20

Water-insoluble organic carbon (WINSOC) was calculated by subtracting the amount
of WSOC from that of OC.

Levoglucosan was analyzed with a liquid-chromatograph coupled with an ion trap
mass spectrometer (LC-MS; Agilent Technologies, SL). Samples were extracted by
using a 2 mL mixture of tetrahydrofuran and water (1:1) in an ultrasonic bath for 30 min.25

The LC-MS method was similar to that presented by Dye and Yttri (2005).
Ions were analyzed from the PM1 filter samples using Dionex DX500 or ICS-3000

ion chromatographs (ICs). Prior to analysis samples were extracted with 5 ml of Milli-Q
7810
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water, shaken for 10 min and filtered with IC Acrodisc syringe filters (0.45 µm, PALL
Gelman Laboratory). DX500 had AG11/CG12A guard columns, AS11/CS12A analyt-
ical columns, 500µl/300µl loops, ASRS/CSRS ultra II suppressors and NaOH/MSA
eluent for anions and cations, respectively. The ICS-3000 setup was similar except to
anion column (AS17) and the anion eluent (KOH). Nitrate, sulfate, oxalate, ammonium5

and potassium were obtained from the PM1 samples, whereas other ions usually an-
alyzed by the IC (methanesulfonate, chloride, sodium, magnesium and calcium) could
not be determined, either because of the high blanks in quartz filters or because the
concentrations were below their detection limits.

Concentrations measured for the back-up filters were subtracted from those of the10

front filters by assuming that they were only adsorbed gas-phase components of the
sample air (positive artifacts) and the adsorption was equal in the front and back-up
filters. The results of nitrate are not presented, because the average nitrate concen-
tration on the back-up filter was 45% of that on the front filter, indicating significant
evaporation of nitrate from the front filter. For EC, levoglucosan, oxalate, potassium,15

sulfate and ammonium the concentration on the back-up filter was in the range of 0–
4% of the concentration on the front filter, on average, whereas the corresponding
percentages were 12% and 28% for OC and WSOC, respectively.

2.3 Online measurements

2.3.1 Semicontinuous OC/EC analyzer20

Organic and elemental carbon concentrations were measured using the semi-
continuous OC/EC Carbon Aerosol Analyzer (Sunset Laboratory Inc., Portland, OR).
Three-hour measurement periods were used to ensure that the concentrations are well
above the detection limit also during low concentration events. Measurements started
every day at 00:00, 03:17, 06:00, 09:00, 12:00, 15:00, 18:00 and 21:00 local time.25

The instrument collected particles for 164 min (147 min for the measurement started
at 03:17) after which the sample was analyzed with the thermal-optical method. At
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03:00 a two-minute blank sample (instrumental blank) was collected and analyzed.
The measurement period for semicontinuous OC/EC analyzer covered one year, from
September 2006 to August 2007.

Similar to the OC/EC analyzer intended to be used in the laboratory (Birch and Cary,
1996), the thermal method of semicontinuous OC/EC consisted of a helium phase in5

which OC was determined, and a helium-oxygen phase (2% oxygen) in which EC was
determined. The helium phase had two temperature steps: 600◦C (80 s) and 840◦C
(90 s), and the helium-oxygen phase had three steps: 550◦C (30 s), 650◦C (45 s) and
850◦C (90 s). Charring of OC was corrected using the data obtained from the tuned
diode laser (red 660 nm), which enabled the separation of pyrolyzed OC from EC. The10

detector in the semicontinuous OC/EC was a non-dispersive infrared detector.
In addition to thermally determined OC and EC described above, the semicontinuous

OC/EC instrument measured optical EC with the laser light transmission (660 nm).
The time resolution for optical EC was three minutes, but the instrument calculated
also an average for the selected sampling time. By subtracting optical EC from total15

carbon (TC; thermal OC + thermal EC) the concentration of so called “optical OC” was
obtained. Since the concentrations were low most of the time in Helsinki during this
study, the measurements of TC and optical EC were estimated to be more reliable
than those of thermal EC and thermal OC. Therefore only the results of optical EC and
“optical-OC” are presented in this paper.20

A parallel plate carbon filter denuder (Sunset Laboratory Inc., Portland, OR) was
used to remove organic gaseous components from the sample air. The efficiency of
the denuder was tested by adding a polytetrafluoroethylene (PTFE) filter to the sam-
pling line prior to the denuder and measuring OC and EC concentrations for 24 h using
a similar procedure to the non-blank measurements. A value of 0.52±0.10µgC m−3

25

was measured for the denuder break-through. Since the instrumental blank (3 min
sample at 03:00) was equal to 0.36±0.12µgC sample−1, which corresponds to
0.24±0.079µgC m−3 for three-hour sample, a value of 0.76µgC m−3 was subtracted
from the TC results. That value was 31±17% of the measured TC, on average.
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The sample flow rate of the semicontinuous OC/EC instrument was originally
5 L min−1, but it was raised to 9.2 L min−1 in order to increase the sensitivity of the
measurements. Also the original cyclone (cut-off at 2.5µm) was changed to a cyclone
with a cut-off at 1µm in order to allow the comparison with the other instruments. The
performance of semicontinuous OC/EC analyzer and especially the sampling artifacts5

have been studied in detail by Arhami et al. (2006).

2.3.2 PILS-IC

The ionic composition of fine particles was measured using the Particle-into-Liquid
Sampler (PILS; Metrohm Peak Inc; Orsini et al., 2003) coupled with two ion chro-
matographs. Prior to the PILS and ICs, a virtual impactor (VI; Loo and Cork, 1988) was10

used to select an appropriate particle size range. The major flow of the VI (15 l min−1)
with the fine fraction of aerosols was fed into the PILS system. A VI with a cut-off size
of 1.3µm was used. Annular denuders (URG-2000, 30×242 mm, Chapel Hill, NC) in a
series upstream of the PILS were used to remove acidic gases and ammonia from the
sample air. Two denuders were coated with a KOH (1%) solution and one denuder was15

coated with a H3PO4 (3%) solution. The samples were analyzed simultaneously using
two Dionex ICS-2000 ion chromatographs (Dionex, Sunnyvale, USA). Time resolution
of the PILS-IC system was 15 min. The PILS-IC system is described more detailed in
Kuokka et al. (2007).

2.4 Gas-phase components and meteorology20

Ozone (O3) was measured using TEI 49 analyser (Thermo Environmental, Franklin,
MA, USA), nitrogen oxides (NOx) using TEI 42S analyzer (Thermo Environmental,
Franklin, MA, USA) with molybdenum thermal converter and nitrogen monoxide (NO)
using TEI 42S analyzer. Carbon monoxide (CO) was measured using Horiba APMA
370 analyser (Horiba, Kyoto, Japan), but it operated at SMEAR III only in 2007. Time25

resolution for the gases was 1 min. Nitrogen dioxide (NO2) concentration was calcu-
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lated by subtracting the NO concentration from that of NOx. Local meteorological pa-
rameters were obtained from the automatic weather station (Vaisala Milos 500, Vaisala
Oyj, Vantaa, Finland) that operated next to the measurement site.

2.5 Data analysis

In order to study the sources of organic carbon, a Positive matrix factorization (PMF)5

method was used. PMF is a least-squares-based factor analysis model that has been
used in various studies to identify the sources of particles (e.g., Song et al., 2006;
Huang et al., 2006). The PMF method has been described in detail by Paatero (1997,
1999). The episodic samples (two major biomass burning episodes) were excluded
from the data set after which the data consisted of 230 samples and 11 variables.10

PMF was run with the factor numbers of 3–6 giving the best fit for four factors. The
factor solution explained 88–100% of the variation of each component, with the lowest
percentage obtained for ozone. The uncertainties used for the PMF analysis were in
range 5–15%, the lowest percentage being estimated for sulfate and the largest for
WSOC and levoglucosan.15

For OC and WSOC the concentrations associated with each source (factor) were
calculated by multiplying the concentration of OC by the relative contribution of each
source (0–1) and by the fraction of OC (0–1) attributed to each source.

3 Results and discussion

3.1 PM1 filter measurements20

3.1.1 Annual concentrations

The PM1 filter measurements were carried out from March 2006 to February 2007.
During that time there were two major episodes of biomass burning smokes. The first
episode in April–May 2006 was long-range transported and during that episode the
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concentrations were continuously elevated over 12 days (Saarikoski et al., 2007). The
second episode in August 2006 was a series of short-term concentration peaks of
which most originated from forest fires that were in Russia only 150–200 km from the
measurement site.

The annual-average concentration of OC was equal to 2.5µg m−3 (Table 1). As it can5

be seen from Fig. 1, the OC concentration elevated significantly during the biomass
burning episodes, which raised the annual-average. By excluding the biomass burning
episodes, the average OC concentration became equal to 1.5µg m−3. It was clearly
lower than the annual-average OC measured by Viidanoja et al. (2002) between July
2000 and July 2001 in Helsinki (3.0µg m−3), but also the average for EC was higher10

in their study (1.2µg m−3) than in this paper (Table 1). In addition to the apparent
year-to-year variation, the difference was probably caused by the different location of
the measurement sites. Viidanoja et al. (2002) measured very close to a road (14 m),
whereas in this study the site was not directly influenced by the traffic. Additionally, the
site used in this study was located on top of a small hill, which enabled higher wind15

speeds and therefore more efficient dilution of local emissions. Also the measured size
fractions were slightly different. In the work of Viidanoja et al. (2002) the collected size
fraction was PM2.5 and in this work it was PM1.

The annual-average contribution of WSOC to OC was 56%. By taking into account
the large variability of this contribution during the year, the split between WSOC and20

WINSOC during the biomass burning episodes was not different from that during other
times of the year (Fig. 1). Of water-soluble ions the largest concentration was mea-
sured for sulfate with no clear difference between the annual and non-episodic aver-
age concentrations (Table 1). Also for ammonium the non-episodic average was only
slightly smaller than the annual average including the episodes.25

3.1.2 Seasonal variation

OC concentrations had a slight dependence on ambient temperature. The OC con-
centration decreased with the increasing temperature up to about 4◦C, whereas above
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4◦C the OC concentration increased with the increasing temperature (Fig. 2). Since
the biomass burning (wildfire) episodes clearly deviated from the seasonal trend, they
are shown separately. The WSOC concentration showed a pattern similar to that of
OC when plotted against the ambient temperature, which is expected since WSOC
correlated strongly with OC (Pearson correlation coefficient, R, 0.84). However, there5

seems to be a seasonal trend for the fraction of WSOC in OC, since the WSOC/OC ra-
tio dropped in the beginning of October 2006 and stayed at a lower level until the end of
the measurement period (Fig. 1). The decrease in fall agrees with the previous studies
conducted in Europe (Decesari et al., 2001; Jaffrezo et al., 2005; Viana et al., 2007),
in which a slightly larger WSOC fraction has been measured in summer than in winter.10

The seasonal variation of WSOC fraction indicates that the sources, or source contri-
butions, are different for WSOC and OC. Some evidences for this will be presented in
Sect. 3.1.3. The temperature is a good parameter for examining the seasonal cycles
of PM in Finland where there are four clear seasons with different temperature profiles.
Nevertheless, the temperature is not independent of other variables such as the global15

radiation.
The temperature dependence of OC (and WSOC) can be explained by two major

sources that depend on the season. First, by using levoglucosan, which is a tracer for
biomass combustion (Simoneit et al., 1999), it is possible to track wood combustion in
the residential heating. The annual-average levoglucosan concentration was 0.064µg20

m−3 (Table 1) with a large temporal variability and clearly higher concentrations mea-
sured in winter than in summer. The same trend was found when the carbon content
of levoglucosan was compared to OC (Fig. 3a). The fraction was quite stable at tem-
peratures below 5◦C but decreased steeply with increasing temperature above 5◦C.
This indicates that the domestic wood combustion is a significant source of OC at low25

temperatures (in winter), but it may also imply that levoglucosan is not stable in the
atmosphere in summer. This topic will be discussed in more detail in Sect. 3.1.4.

Oxalate has several sources, including engine exhaust emissions, fuel oil combus-
tion, biomass burning and biogenic sources (Chebbi and Carlier, 1996). Most of these
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sources are secondary. The fraction of oxalate in OC is plotted against temperature in
Fig. 3b. The observed pattern for oxalate was opposite to for levoglucosan, showing
an increasing fraction with the increasing ambient temperature. However, for temper-
atures below 0◦C the fraction of oxalate in OC was steady. This finding agrees with
the observation made in the French Alps (Jaffrezo et al., 2005), in which the fraction5

of dicarboxylic acids in WSOC increased with increasing temperature. However, the
threshold temperature was different between the two sites in the Alps (7 and 4◦C) and
this study (approx. 0◦C). Jaffrezo et al. (2005) suggested that there are two regimes
for the formation of WSOC: at warmer temperatures the formation is related closely
to oxidation processes producing dicarboxylic acids, whereas at lower temperatures10

the formation of WSOC is more loosely dependent upon the formation of dicarboxylic
acids.

3.1.3 Sources of OC by PMF

In addition to studying the sources of OC by means of seasonal variation, they were
investigated by using the PMF method. PMF yielded four factors (Fig. 4), of which two15

were similar to those found in the previous section. The first factor had a large con-
tribution from oxalate (63%) and ozone (58%), suggesting that this factor represents
secondary organic aerosol. The second factor was identified as biomass combustion
because nearly all levoglucosan (92%) was loaded into this factor. Also a large fraction
(39%) of potassium, another tracer for biomass combustion, was associated with the20

second factor, whereas almost an equal contribution (35%) of potassium was loaded
into the third factor. Due to high loadings of sulfate (88%) and ammonium (85%) the
third factor was identified as long-range transport. The large contribution of potassium
associated with this factor suggests that in addition to secondary inorganic ions, the
LRT aerosol was also composed of biomass combustion emissions. The fourth factor25

was influenced by traffic-related components EC, NO and NO2 with the percentages
equal to 58, 80, 68%, respectively, associated with this factor. Biomass combustion and
traffic can be assumed to be primary sources for OC, whereas LRT was a mixture of
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components originating from primary and secondary sources. Other primary sources
of OC, like cooking emissions, coke production, vegetative detritus and cigarette smoke
(Subramanian et al., 2007), could not be extracted from the data because the molec-
ular markers for those sources were not analyzed. However, the contribution of those
sources can be assumed to be small in Helsinki.5

The seasonal variation of the four resolved factors is shown in Fig. 4 (right panel).
Prior to PMF the biomass burning episodes were removed from the data set, since
the source profiles during the episodes are likely to be different from those during the
non-episodic period, and since the focus of this study was on the sources generally
influencing Helsinki. That resulted in two gaps in time-series, one in April-May and the10

second in August.
On an annual-basis OC was associated mostly with secondary organic aerosol

(34%), whereas the rest of OC was distributed equally among the three other factors.
Regarding water-soluble OC even a larger fraction was attributed to secondary organic
aerosol (48%). That agrees with the earlier results obtained in Tokyo, in which most15

of WSOC was found to originate from secondary organic aerosol formation (Kondo et
al., 2007). The impact of LRT and biomass combustion was slightly smaller on WSOC
than on OC, whereas the influence of traffic was significantly larger on OC than on
WSOC. Although vehicle emissions are found to be linked to WSOC (Sullivan et al.,
2006) the contribution of traffic to WSOC was only 9.5%.20

The OC concentrations attributed to four sources are presented in Fig. 5a. As ex-
pected, in winter months most of OC was associated with biomass combustion (41%,
Table 2). Although there were day-to-day variations in the concentration of OC in win-
ter, the contribution of biomass combustion was quite stable, indicating continuous
biomass combustion for residential heating in winter in Helsinki. The contribution of25

biomass combustion in Helsinki was close to that measured in Zurich, Switzerland,
(41%; Szidat et al., 2006) and that observed in Ghent, Belgium, (35%; Zdrahal et al.,
2002) in winter. In Zurich and Ghent, however, the studied size fraction was PM10.
In Pittsburgh, Pennsylvania, the impact of biomass combustion on OC (PM2.5) was
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significantly smaller, only 10% in winter (Robinson et al., 2006b).
A significant seasonal variation was also found for the contribution of secondary

organic aerosol. The contribution of SOA to OC increased from spring to summer and
decreased from summer to fall and winter (Fig. 5a). Excluding winter, SOA was a major
fraction of OC with the seasonal-average contribution ranging from 32% in fall to 64%5

in summer (Table 2). The contribution of SOA was lower in Helsinki in summer than
that measured in Tokyo, Japan, where 81% of organic aerosol was found to be from
SOA in summer (Kondo et al., 2007), but much higher than that measured in Pittsburgh
where the 38% of OC was calculated to be SOA in summer (Polidori et al., 2006). In
Zurich, 60% of OC (PM10) in summer and 27% in winter were attributed to biogenic10

emissions, of which the majority was stated to be SOA (Szidat et al., 2006).
The contribution of traffic to OC varied notably from day to day, but the seasonal-

average contributions were quite stable ranging from 25 to 27% (Table 2), except in
summer. In summer the traffic-related OC was only 15% (Table 2) probably because of
low traffic volume during summer holidays. The contribution of traffic to OC was slightly15

larger in Helsinki than in Toronto, Canada, where 10–20% of OC was due to primary
particulate OC emissions from motor vehicles with the lack of seasonal pattern (Brook
et al., 2007). In Pittsburg vehicular contribution to OC was found to be between 13 and
20% in winter (Subramanian et al., 2006).

The contribution of long-range transport to OC was highest in spring (29%) and20

somewhat lower (∼20%) during the other seasons (Table 2). However, in addition to
spring also in summer and in fall most of the OC concentration peaks were due to the
high contribution of LRT (Fig. 5a). In winter all high OC concentrations were caused by
the large contribution of biomass combustion.

Regarding the source contributions of WSOC, the seasonal variation was similar to25

that found for OC, except that the fraction of SOA was more pronounced throughout
the year (Fig. 5b). The seasonal variation of SOA explains the drop in the WSOC/OC
ratio observed in October 2006 (Fig. 1). Since most of WSOC is attributed to SOA,
the decrease in SOA formation in October lowered the WSOC concentrations. For
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OC concentration there was no significant change in October because the contribution
of biomass combustion OC increases concurrently with the decreasing contribution of
SOA (Fig. 5a). The influence of biomass combustion was smaller on WSOC than on
OC. However, in Shenzhen (China) biomass burning has been found to be the major
source of WSOC both in winter and summer (Huang et al., 2006), the contributions5

(76% in winter and 58% in summer) being much higher than those measured in Helsinki
in this study (Table 2).

3.1.4 Characterization of sources

The OC/EC and WSOC/OC ratios calculated for the four sources are shown in Table 3.
Of these sources, the OC/EC ratio was smallest for traffic. For traffic the ratio obtained10

in this study (0.71) was smaller than those given for light duty gasoline vehicles (2.2)
and for heavy-duty diesel vehicles (0.8) by Na et al. (2004). The fraction of WSOC in
OC was only 27% for traffic but it is still twice the percentage measured close to high
traffic road in Paris, France (12.5%, Ruellan and Cachier, 2001).

Traffic seemed to be a source of SOA as well, indicated by relatively small OC/EC15

ratio obtained for SOA (Table 3). In addition to traffic also biogenic production is sup-
posed to be a major source for SOA because in the boreal region biogenic secondary
organic aerosol concentrations are high (Tunved et al., 2006). Although the measure-
ments discussed in this paper were made in an urban background area, biogenic SOA
is likely to be important because it has been suggested that there is a consistent back-20

ground for SOA in the regional air (Subramanian et al., 2007), and that anthropogenic
species play a role in SOA formation from biogenic VOCs (Weber et al., 2007). Also for
the urban environment of Zurich, it has been estimated that biogenic SOA exceeds an-
thropogenic SOA in summer (Szidat et al., 2006). The contribution of biogenic SOA is
not limited to summertime, since in Zurich biogenic emissions were found to be signifi-25

cant source of OC even in winter. However, in Helsinki the biogenic VOC emissions can
be assumed to be smaller than in Zurich in winter since the growing season is much
shorter in Helsinki than in Zurich. Nearly all (80%) secondary organic aerosol was
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water-soluble, which is in line with the statement that WSOC is the major constituent
of secondary organic aerosol (Saxena and Hildemann, 1996).

The largest OC/EC ratio (12, Table 3) was obtained for the long-range transport.
It is clearly larger than the corresponding ratio measured in Amsterdam, Barcelona
and Ghent (4.4–8.9) during the periods when aerosols were of regional or long-range5

continental origin (Viana et al., 2007). The WSOC/OC ratio was 0.47 for LRT, which
was lower than expected since transport allows for more photochemical processing of
aerosol leading to more oxidized and therefore more water-soluble OC. However, the
WSOC/OC ratio was larger for LRT than for the fresh emission sources, traffic (0.27)
and biomass combustion (0.40). The WSOC/OC ratio for LRT was also larger than10

that measured by Viana et al. (2007) in Amsterdam (0.34) and Barcelona (0.36) when
aerosols had regional or long-range continental European origin.

For biomass combustion the OC/EC ratio was equal to 6.6. This ratio is higher than
that obtained by Frey et al. (2006) for smoldering (2.4) and normal combustion (0.93)
in laboratory tests carried out in Finland. Frey et al. (2006) burned only one wood15

species, birch, which is the most common wood in small-scale residential heating. For
another wood species used in Finland, spruce and pine, OC/EC ratios from 1.7 to 2.5
have been measured (Iinuma et al., 2007). In contrast, the OC/EC ratio obtained in
this study is much lower than the average OC/EC ratio Fine et al. (2001, 2002, 2004)
measured for 22 wood species (26). 40% of OC attributed to biomass combustion20

was water-soluble (Table 3). Compared to laboratory studies of Frey et al. (2006), the
percentage was two times that measured for normal and smoldering combustion (22%
and 18%, respectively) but it was only slightly higher than that obtained by Iinuma et
al. (2007) (29 to 38%). It is obvious that a large portion of water-insoluble OC emissions
from biomass combustion transform into water-soluble OC through oxidation in the25

atmosphere. However, that process must be quite fast since the particulate matter
from the biomass combustion measured in this study is assumed to be regional or to a
certain extent even local.

The OC/levoglucosan ratio has been used in order to assess the contribution
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of biomass combustion related OC to total OC measured from the ambient air
(e.g. Zdráhal et al., 2002). According to PMF results the OC/levoglucosan ratio was
9.2 for biomass combustion (Table 3). It is slightly smaller than the ratio measured
by Frey et al. (2006) for normal combustion (9.8) but in case of smoldering the ratio
was significantly higher being equal to 24.6. In the studies of Fine et al. (2001; 2002;5

2004) the average OC/levoglucosan ratio was 14.2 but the variation between the wood
species was substantial ranging from 3.0 to 100. A rather small OC/levoglucosan ratio
has been measured for pine (2.1–3.5) and spruce (2.1) by Iinuma et al. (2007).

The suitability of levoglucosan for quantitatively tracking the biomass combustion
emissions can be questioned, since its emission fraction is highly dependent on com-10

bustion conditions (Hedberg et al., 2006). Congruent with this, also the ambient ratios
of different biomass smoke markers have been found to vary significantly from day to
day, indicating that the composition of the biomass smoke is variant (Robinson et al.,
2006b). Also the sampling methods as well as the correction methods for the sampling
artifacts (negative and positive) affect the OC/levoglucosan ratios measured either for15

the biomass combustion aerosol or for the ambient aerosol samples.
Laboratory tests have shown that levoglucosan is stable over a period of 10 days

(Fraser and Lakshmanan, 2000). However, Gao et al. (2003) speculated that levoglu-
cosan may be chemically converted into diacids during an upward transport. In this
study also evidence of the depletion of levoglucosan was found. By comparing lev-20

oglucosan to potassium, the concentration of levoglucosan decreased more sharply
than that of potassium from winter to summer, as illustrated by the time trend for the
levoglucosan/potassium ratio (Fig. 6). Since potassium is known to be stable in the
atmosphere, it must be levoglucosan that had disappeared from the particles. A clear
seasonal trend for the levoglucosan/potassium ratio suggested that in summer levoglu-25

cosan may have been photochemically oxidized. This kind of atmospheric process is
in accordance with the study of Robinson et al. (2006a), in which photochemical oxida-
tion was found to cause severe depletion of hopanes, the molecular markers for motor
vehicle emissions, in summer.
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Instead of photochemical oxidation in summer, the results from PMF suggested,
however, that the loss of levoglucosan was related to transport. As mentioned before
(and shown in Fig. 4), fine LRT particles contained considerable amounts of potassium,
an evidence that biomass combustion emissions contributed to LRT. On the other hand,
there was no levoglucosan in LRT. The absence of levoglucosan in LRT explains the5

seasonal variation of the levoglucosan/potassium ratio (Fig. 6). There can be a sea-
sonal trend also for the biomass combustion particles in LRT, but that could not be
resolved although PMF was run for summer and winter data separately (not shown).

3.2 Online measurements

3.2.1 Diurnal variation of OC10

In addition to the PM1 filter samples, OC concentration was measured by the semicon-
tinuous OC/EC analyzer with a time-resolution of three hours. In the case of filter sam-
ples the aim was to study the sources of OC on a daily basis, whereas the data from
the semicontinuous OC/EC instrument was used to investigate the diurnal variation of
the sources. Similar to the filter measurements, semicontinuous OC measurements15

covered one year period, from September 2006 to August 2007, but the measure-
ment periods overlapped only for six months. In order to compare the semicontinuous
OC/EC to PM1 filters, the 3-h data were averaged to correspond with the 24-h PM1 fil-
ter samples collected simultaneously (September 2006–February 2007; 102 samples).
On average, the semicontinuous OC/EC gave 4% larger concentrations for OC than20

PM1 filters (R2 0.90). A similar difference was obtained for EC, with 5% higher concen-
trations obtained from the semicontinuous OC/EC than from the filter measurements
(R2 0.90).

The diurnal variation of the OC concentration was small compared with its day-to-day
variability. Even though the OC data was divided into four seasons (fall: Sep–Nov, win-25

ter: Dec–Feb, spring: Mar–May, summer: Jun–Aug) the diurnal variation was still small.
However, there were some typical daily patterns observed in winter and in summer. In
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winter OC was at its highest in the evening. That can be explained by low boundary
layer height and weak mixing in the evening due to stable atmosphere. Concerning
the emissions of wood combustion, it is most likely that the emissions are highest in
the evening when people return to their houses after the work. OC concentrations
were especially high in Saturday evenings in wintertime. Besides fireplaces and wood5

stoves, these high OC concentrations were obviously related to saunas heated typi-
cally in Saturday evenings. One example of this kind of local biomass combustion will
be shown in Sect. 3.2.3. In Denmark residential wood combustion in the evening has
been observed as peak concentrations of EC (Glasius et al., 2006) but that was not
observed in Helsinki.10

In summer the concentration of OC was slightly lower in the afternoon and in the
evening than in other times of the day. Again, this was probably related to the local
meteorology resulting from more efficient mixing of afternoon pollutants with increasing
temperature in daytime. Semi-volatile organic compounds might also have an effect
on the observed trend because the volatilization of these compounds from particles15

increases with the increasing temperature. In several earlier studies OC has been
found to peak in daytime due to SOA formation (e.g. Takegawa et al., 2006; Polidori
et al., 2006; Plaza et al., 2006). Even though SOA was found to be a major source
for OC in Helsinki in summer (Table 2) the formation of SOA could not be seen from
the semicontinuous OC data. That indicates the major part of SOA being regional as20

suggested by Subramanian et al. (2007).
The difference between weekdays and weekends was small for the OC concentra-

tions (Fig. 7a). On average, the OC concentration was quite stable throughout the
day on weekdays, in contrast to clear diurnal variation observed on Saturdays and
Sundays. On Saturdays, OC was lower in daytime than at night, but the highest OC25

concentrations were measured at nights between Saturday and Sunday. In addition to
domestic biomass combustion in Saturday evenings the high concentrations were prob-
ably caused by traffic. Overall, the OC concentrations were higher on weekdays than on
weekends only from 06:00 to 18:00, the difference being in the range 0.30–0.42µg m−3.
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For EC the diurnal variation was close to that of OC on Saturdays and Sundays but on
weekday EC was clearly elevated in daytime because of traffic (Fig. 7b).

3.3 Contribution of traffic to OC

Because of low number of chemical components measured online (OC, EC, gases),
PMF was not used for the semicontinuous OC/EC data. Instead, the impact of traffic5

on OC was estimated by using the OC/EC ratio obtained for traffic by PMF (0.71,
Table 2). This approach assumes that all EC originated from traffic and that the OC/EC
ratio for traffic does not depend on the season. On average, this “fixed OC/EC ratio”
method gave larger contribution of traffic to OC (34%) than PMF (20%, Table 2) which
was expected since only 58% of EC was attributed to traffic by PMF. Also, it should be10

noted that only half of the measurement period of semicontinuous OC/EC overlapped
the period of PM1 filter samples used for PMF. However, the difference between two
methods is reasonable since the main purpose of using this “fixed OC/EC ratio” method
was to study the diurnal variation of traffic related OC.

By using the OC/EC ratio of 0.71 the contribution of traffic to OC was 36% at week-15

days and 24 and 25% on Saturdays and Sundays, respectively (Fig. 8). The contri-
bution of traffic was at its highest at weekdays during morning rush hour, from 06:00
to 09:00, being equal to 57%. After that the contribution decreased having the low-
est value from 03:00 to 06:00 (18%). At weekends the contribution of traffic to OC
ranged from 19 to 30%. On Saturdays the contribution increased slightly in the morn-20

ing, whereas on Sunday the highest contribution was measured in the evening (18:00–
21:00) caused obviously by people returning home from their summer cabins. Similarly
to the weekdays the lowest contribution at weekends was measured at 03:00–06:00.
The contribution of traffic to OC was higher in Helsinki than that measured in Toronto,
in May and in June (Brook et al., 2007). In Toronto the contribution of motor vehicles to25

primary OC was 18% at weekdays and 7.0% at weekends. The daytime contribution
was 1.5 times that measured during the night in Toronto.
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3.3.1 The influence of biomass combustion (Case study)

Since neither of the tracers, levoglucosan or potassium, were measured online con-
tinuously, the diurnal variation for the contribution of biomass combustion could not
be calculated. However, the PILS-IC system operated at SMEAR III in January and
February 2007 enabled studying of the biomass combustion qualitatively. One case of5

the local biomass combustion is shown in Fig. 9.
On Saturday, 10 February, the OC concentration increased significantly at about

18:00 and remained elevated until 06:00 on Sunday, 11 February. This concentration
peak was probably caused by a decreased boundary layer height accompanied by a
decreasing temperature and low wind speed (Fig. 9e). In addition to the meteorological10

situation, favoring poor dilution of emissions, there were two major sources for OC at
that weekend. The highest OC concentration was measured on Saturday evening
at 18:00–21:00 concurrently with the peak concentration of potassium (Fig. 9a). In
addition to extensive biomass combustion for domestic heating because of low ambient
temperature, the saunas are traditionally heated in Finland on Saturday evening but15

also the use of fireplace for pleasure is most common on Saturday evening. In the
PILS-IC data chloride concentration followed closely that of potassium (Fig. 9b). Since
the concentration of sodium was steady on that weekend (Fig. 9b) the increase of
chloride was likely to be associated with biomass combustion (Andreae et al., 1998)
but it should be noted chloride can also be attributed to coal combustion (Song et al.,20

2006). In Helsinki the domestic coal combustion can be assumed to be extremely
small, and since the coal-fired power plants have high release height they are not likely
to affect the chloride concentrations observed near ground level.

Besides biomass combustion the OC concentration was influenced by traffic. That
can be seen from the elevated EC concentrations, especially on Sunday, (Fig. 9a)25

as well as from NO, NO2 and CO concentrations (Fig. 9d). Independent of NO and
NO2, there was a peak in the CO concentration on the Saturday evening (at 19:00–
20:00), demonstrating that CO was attributed to both traffic emissions and local wood
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combustion as has been observed also by Glasius et al. (2006). Other ions analyzed
by the PILS-IC, sulfate, ammonium and nitrate (Fig. 9c), were not influenced by the
temperature inversion indicating that they did not originate from the local sources like
biomass combustion or traffic.

4 Summary and conclusions5

The origin of organic carbon in fine particulate matter in Helsinki, Finland, was as-
sessed by measuring the chemical composition of particles with three different time-
resolutions. First, the PM1 filter samples were collected on a daily basis for a year and
subsequently analyzed for major chemical components and some tracers. The data
were analyzed by using PMF which resolved the factors affecting the concentrations.10

Secondly, the OC and EC concentrations were measured with a time-resolution of three
hours by the semicontinuous OC/EC instrument in order to study the diurnal trends of
the sources. Finally, one example of the local pollution situation occurring typically in
winter was shown. During that case, the PILS-IC determined the concentrations of
major ions with the time-resolution of 15 minutes.15

PM1 filter samples were collected from March 2006 to February 2007. The period
was quite special since in spring and summer 2006 large quantities of biomass smokes
were transported to Helsinki mostly from Russia. During these episodes the OC con-
centrations elevated significantly, but the impact of episodes was important also on
annual basis. By taking into account the episodes an annual average for OC was20

2.5µg m−3 but it decreased to 1.5µg m−3 when the episodes were excluded. How-
ever, since the aim of this study was to evaluate the sources of OC ordinarily affecting
Helsinki, the episodes were removed from the data set prior to PMF.

The OC concentrations were found to be influenced by four major sources: biomass
combustion, traffic, long-range transport and secondary aerosol production. On an25

annual basis the OC concentrations were dominated by secondary organic aerosol
(34%). The contribution of SOA was surprisingly high both in winter (16%) and summer
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(64%) when taking into account the low photochemical activity at high latitudes. How-
ever, the large SOA fraction can be explained by significant biogenic VOC emissions in
the boreal region, serving as precursors for the SOA formation. Biomass combustion
constituted the largest fraction of OC in winter (41%), indicating extensive domestic
biomass combustion for heating purposes. For traffic the contribution to OC was equal5

between the fall, winter and spring (25–27%), but lower in summer (15%). On average
24% of OC was from long-range transportin Helsinki. That fraction included probably
also long-range transported biomass combustion emissions. Levoglucosan, the tracer
used for tracking biomass combustion, may have depleted during the transport.

Traffic influenced OC concentrations throughout the day. By comparing weekdays10

with weekends, the contribution of traffic was larger between 06:00 and 18:00 on week-
days than on weekends. Biomass combustion was observed as elevated OC concen-
trations in the evening in winter, especially on Saturday evenings. Besides wood com-
bustion for domestic heating this finding was related to fireplaces used for pleasure and
saunas, both heated traditionally on Saturday evening.15

On annual basis 56% of OC was water-soluble. All of the four identified sources
affected WSOC concentrations but with different contributions than in case of OC. The
contribution of SOA was much larger to WSOC than to OC, whereas the influence of
traffic was smaller on WSOC than on OC.
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P., Koskentalo, T., Kousa, A., and Maenhaut, W.: Sources and chemical composition of5

atmospheric fine and coarse particles in the Helsinki area, Atmos. Environ., 35, 5381–5391,
2001.
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Table 1. Annual average concentrations (Annual) and the average concentrations excluding
the two major biomass burning episodes (Non-episodic) for the measured particle-phase and
gaseous components. OC, EC, WSOC, levoglucosan, ammonium, potassium, sulfate and ox-
alate were analyzed from the PM1 filter samples.

Component Annual average±SD Non-episodic average±SD

OC (µg m−3) 2.5±2.8 1.5±0.87
EC (µg m−3) 0.89±0.73 0.74±0.45
WSOC (µg m−3) 1.5±1.8 0.85±0.58
Levoglucosan (µg m−3) 0.064±0.087 0.041±0.050
Ammonium (µg m−3) 0.68±0.59 0.58±0.50
Potassium (µg m−3) 0.072±0.17 0.057±0.16
Sulfate (µg m−3) 1.7±1.3 1.5±1.2
Oxalate (µg m−3) 0.088±0.096 0.058±0.053
O3(ppb) 23±8.9 21±8.0
NO (ppb) 5.2±5.9 5.2±6.1
NO2(ppb) 11±6.2 11±5.9
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Table 2. The source contributions for OC and WSOC in winter (Dec–Feb), spring (Mar–May),
summer (Jun–Aug) and fall (Sep–Nov) (average±SD). Sources and their contributions were
identified by PMF.

Winter Spring Summer Fall

% of OC Secondary organic aerosol 16±11 34±17 64±12 32±18
Biomass combustion 41±15 12±8.9 3.4±6.0 20±14
Long-range transport 17±13 29±10 19±11 21±14

Traffic 26±12 25±13 15±13 27±15
% of WSOC Secondary organic aerosol 28±18 49±19 78±8.8 47±21

Biomass combustion 38±16 11±8.1 2.3±4.1 18±15
Long-range transport 18±14 27±11 13±8.4 20±13

Traffic 16±8.5 14±9.0 6.6±6.7 15±11
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Table 3. OC/EC, WSOC/OC and OC/levoglucosan ratios for the four identified sources.

Secondary Biomass Long-range Traffic
organic carbon combustion transport

OC/EC 3.3 6.6 12 0.71
WSOC/OC 0.80 0.40 0.47 0.27
OC/levoglucosan 9.2
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Fig. 1. OC concentration and the WSOC/OC ratio from March 2006 to February 2007 at
SMEAR III in Helsinki. OC and WSOC were analyzed from the daily PM1 filter samples.
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Fig. 2. The concentration of OC plotted against ambient temperature in linear (a) and in log-
arithmic scale (b). Two biomass burning episodes are shown separately. Results are for the
PM1 filter samples collected on daily basis.
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Fig. 3. The fraction of levoglucosan (a) and oxalate (b) in OC plotted against ambient temper-
ature. The biomass burning episodes in April–May and in August are shown separately. Note
logarithmic y-axis. Levoglucosan, oxalate and OC were analyzed from the PM1 filter samples.
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Fig. 4. The composition of four factors resolved by PMF (left column) and their time series (right
column). Factors were identified as secondary organic aerosol (factor 1), biomass combustion
(factor 2), long-range transport (factor 3) and traffic (factor 4). The number of PM1 filter samples
was 230 since two major biomass burning episodes were excluded from the data set.
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Fig. 5. The concentrations of four OC fractions (a) and WSOC fractions (b) attributed to the
sources identified by PMF. Samples were PM1 filter samples.
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Fig. 6. Time trend for the levoglucosan/potassium ratio. Levoglucosan and potassium were
analyzed from the PM1 filter samples.
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Fig. 7. Diurnal variation of OC (a) and EC (b) concentrations on weekdays, Saturdays and
Sundays. Concentrations were measured by the semicontinuous OC/EC analyzer operated
from September 2006 to August 2007 with the time-resolution of 3-h.
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Fig. 8. The contribution of traffic to OC on weekdays, Saturdays and Sundays. Contributions
were calculated by using the OC/EC ratio of 0.71.
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Fig. 9. The concentrations of OC, EC and potassium (a), chloride and sodium (b), sulfate,
ammonium and nitrate (c), NO, CO and NO2 (d), as well as temperature and wind speed (e)
on 10–11 February 2007 in Helsinki. OC and EC concentrations (a) were measured by the
semicontinuous OC/EC analyzer and ions (a–c) by the PILS-IC. Time-resolution was 3 h for
OC and EC and 15 min for ions. Gaseous components and meteorological parameters are
presented as one hour averages.
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